It's quite clear we need some more geochemistry here

VISITANTE

Phil Allen

ũ

Jon Hill

Nick

Fox

Mike Schmulian

Tim Coughlin

Rod Holcombe

24

Marcio Salles

01 ---

Abhen Pather

- Assessment of previous work especially mapping, data, stable isotopes and fluid inclusions by Vieira, Ribeiro-Rodrigues, Xavier; geochronology by Noce and Tassinari; general geology of the region e.g. Lobato et al. 2001a, b
- Underground <u>sampling</u> and <u>mapping</u> key features (Cuiabá), core logging and sampling (Cuiabá, Lamego, Raposos, Morro Velho), petrography, microprobe analysis of carbonates
- Petrography, mineral chemistry and wholerock geochemistry pertinent to ore genesis and exploration
- Stable isotope geochemistry
- Zircon U-Pb geochronology of cover sequences (Moeda and Maquine quartzites)
- Ar-Ar in pyrite geochronology of syn-ore basalt alteration
- Monazite U-Pb geochronology in cover sequence clastics
- geochemical modelling of ore genesis scenarios
- Fusion with local and regional structural models
- Development of ore genesis model by fusion of the above with regional and mine scale structural work

PH05017766 - Finalized

CLIENT : "JAMCOOTV - James Cook University (Townsville)"

of SAMPLES : 27

DATE RECEIVED : 2005-03-10 DATE FINALIZED : 2005-04-08

PROJECT : "Anglogold Brazilian"

CERTIFIC/ICP-AES results shown. REE's may not be totally soluble in MS61 method."

PO NUMBER : "Per email request D Foster"

	Au-AA24	ME-MS61												
SAMPLE	Au	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
DESCRIPT	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
CU-74	<0.005	0.18	9.56	5.7	10	0.32	0.05	4.61	0.09	9.5	58.4	207	0.12	51.4
CU-75	0.005	0.22	8.87	4.7	20	0.25	0.04	4.83	0.1	14.5	62.7	225	0.11	26.7
CU-76	<0.005	0.26	9.08	22.6	60	0.26	0.04	2.75	0.1	9.68	58.5	218	0.25	112.5
CU-77a	0.045	0.25	7.33	21.3	500	1.3	0.3	3.78	2.13	40.1	44.4	261	3.18	75.6
CU-77b	<0.005	0.21	8.34	67.5	180	0.91	0.03	1.45	0.06	27.4	65.7	252	3.17	73.7
CU-78a	0.137	2.07	6.93	497	230	2.25	2.88	1.96	27.2	68.1	101	259	4.06	234
CU-78b	0.072	1.48	10.35	22.8	360	3.59	1.04	2.21	10.05	111.5	53.4	316	8.43	245
CU-79a	3.84	0.45	0.17	>10000	10	0.24	0.17	4.04	0.11	2.05	41.1	<1	0.09	10.4
CU-79b	1.19	0.25	0.25	2150	<10	0.08	0.11	8.6	0.1	2.62	21.2	26	0.09	152
CU-81a	<0.005	0.18	6.73	59	440	0.85	0.07	4.02	0.1	44.3	48.1	70	4.04	72.3
CU-81b	<0.005	0.14	6.55	56.5	80	0.77	0.04	5.22	0.06	18.2	32	59	2.84	48.2
CU-81c	0.009	0.15	5.15	47.2	40	0.5	0.05	9.07	0.06	18.85	38.3	46	1.74	69.6
CU-81d	<0.005	0.1	0.79	30	40	0.1	0.02	26.3	0.1	7.24	8	<1	0.39	0.2
MV-13d	0.05	0.61	3.01	369	120	0.61	0.59	7.03	0.13	53.8	40.4	148	2.13	243
MV-14a	0.007	0.12	2.67	110	10	0.23	0.12	14.1	0.09	8.56	13	97	0.18	2.7
MV-14b	<0.005	0.14	7.67	234	40	0.64	0.1	4.76	0.08	27.8	38.1	359	2.25	1.4
MV-14c	0.275	0.31	4.23	1145	10	0.2	0.33	0.77	0.06	20.4	16.8	142	0.23	76.8

Exploration geochemistry is only truly useful if it is placed in the context of a comprehensive understanding of the geochemistry of the ore forming system

Geochemical Analysis

What do I do with this?

Structural model of Holcombe et al: refolded folds (strains too low to support sheath fold model for Cuiabá)

Regional foliation)

Early fabric preserved in carbonate porphyroblast

CU18 graphitic carbonatic schist, 300m into hangingwall, Cuiabá deephole

Syn-foliation carb qtz boudin infill

Geochronology – Iron Quadrangle

 Pyrite-white mica from mineralized footwall basalt at Cuiabá (Ar-Ar in pyrite, timing of oreproximal alteration and sulphides)

Geochronology – Iron Quadrangle

U-Pb SHRIMP (zircon) on overlying sandstones (Moeda and Maquine) and on mafic dyke cutting ore at Cuiabá (April Pickard, Mark Barley, UWA)

U-Pb EMPA (monazite) on same sandstones (Paul Evins, JCU) Laser ablation Ar-Ar on alterationrelated white mica included in ore minerals (John Miller, Dave Phillips, U. Melb)

White mica included in pyrrhotite from mineralized footwall basalt: Ar-Ar dates

Com licença, onde está o ouro?

Use geochemistry to build up a conceptual chemical model for the ore system, based around the structural/temporal framework

Stratigraphy and alteration at Cuiabá

Seafloor or diagenetic alteration

Key geochemical steps:

 In BIFs, graphite and magnetite get converted to carbonate, reducing the fluid

Siderite altered BIF

More quartz, sulphides, graphite, Au; less carbonate

Siderite-altered BIF

Silica + graphite

Silica + graphite + sulfides + gold

Low grade relict carbonate BIF

Footwall basalt

Then carbonate altered BIF is silicified, sulfidized and decarbonated (incl. 'Pele de Onça'), locally in association with apparent feeders in footwall basalts

Sulfidized

BIF

Feeder

vein

What is the source of the fluid?

S isotopes

- S in ores was derived from same source as in basalts
- S in black shales has influenced local ore d³⁴S values
- But magmatic/basaltic
 S signature penetrates
 just into immediate
 hangingwall black
 shales consistent with
 these shales acting as
 a cap
- Py-po abundance means that SO₄-H₂S fractionation effects can be ignored; i.e. d³⁴S sulphides ≈ d³⁴S fluid

4.5; Suppressed: Troilite 2000 bars, a [main] = 10^{-2} , a [H₂O] = 1, a [CO₂(aq)] = 10^{5} (speciates), pH ç 325 Diagram Fe⁺⁺, T =

HCh: geochemical modelling package

Advantages for ore deposit studies:

- Powerful and flexible algorithm generator that can be used to model a wide range of geological (fluidrock) scenarios (up to 5 kbar, 1000°C)
- Well maintained high PT thermodynamic datatset that is available online (FreeGs).
- Thermodynamic data for wide range of metals, metal complexes and S.
- Close collaboration with code developer(s) that provides greater potential in future development directions industry focus and user interface.

HCh concept

Creating an ore fluid: equilibrate a simple fluid with basalt when assemblage matches, this is a possible ore fluid

Generated by Plot Graphic Library. (c)Pelikhar

BIF Alteration and Gold deposition

Model 1: Infiltration of precarbonated qtz-mt BIF

Model 2: Infiltration of fresh qtz-mt BIF (no pre-carbonate alteration)

Gold

Generated by Plot Graphic Library. (c)Pelikhan

Model 3: Infiltration of fresh qtz-mt BIF with graphitic shale in middle

Model 3: Infiltration of fresh qtz-mt BIF with graphitic shale in middle

Model 4

- Infiltrate ore fluid through BIF with 5% graphitic shale distributed through out.
- Causes reduced assemblages throughout and without the oxidised assemblages at the most distal portion.
- Good match between model and reality but probably not enough sulfidation
- Extra sulfur magmatic sulfur from depth?

Model 4: Infiltration of fresh qtz-mt BIF mixed with 5% graphitic shale

Gold is lower grade and more distributed: need more sulfur and gold in fluid than modelled – extra source?

Key finding	Potential impact on exploration and mine development
Weak Ag anomalism detected	PIMA work on micas, with corresponding mineral chemistry
in hangingwall sediments	(electron probe) should be trialled to see if a quicker
above Cuiabá and Lamego	exploration method exists for distal ore signals.
K, As, S, Au, Ba, CO2 added to BIFs and proximal footwall basalts by external fluid; Ag, Sb and Si leached from distal footwall basalts; Fe, Ca, C, Zn, Cr, Mn, Mo lost from mineralized BIFs	Only useful for exploration in footwall basalts and BIFs; <i>PIMA/radiometrics for K alteration intensity and mica</i> <i>chemistry may be the cheapest method of detection</i> . High S and As also distinctive for both ore-proximal basalts and BIFs. Feeders are potentially recognisable at mine scales.
Geochemical models require	Black shales are crucial. These deposits must have good black
intercalated black shales in	shale association for high grade, otherwise the
BIF, S isotopes and geochem	magnetite/siderite cannot cause sufficient sulfidation and gold
also indicate hangingwall	deposition. Black shale S isotopes (if BIF hasn't been detected
black shales acted as a	in core but black shale has) could potentially indicate ore
trap/cap	proximity: 5 to 10% = distal, 3 to 5% = proximal

• Main exploration outcome: recognise F1 hinges, then target BIFs with intimately associated graphitic schists

• Main mining outcome: recognition of feeder structures can help with prediction of down-plunge orebody extensions. Pay attention to graphitized BIF

The end.