

Database Fundamentals and Pitfalls

Or

There is a difference between a spreadsheet and a database

Rod Holcombe

rod@hco.net.au

• Correctebaste are now orful well understand, and familiar

- Spreadsheets are powerful, well understood, and familiar to most geologists
- Hence when time and resources are limited, spreadsheets are the low cost, easily implemented database solution to record and archive drillhole and field data

Is this a database?

	A	В	C	D	E	F	G	н		J	К	L	M	N	
1			Drill dat	ta			Structu	ле			Assay	(- = bel	ow detectio	on)	
	DDH_ID							<u> </u>		_					
~		D	DI	A_:H	T				Laic	Cu	41	Au	Interval	Sample	
2		Depth	Plunge	Azimuth	туре	œ.	9		airn	(ppmj	AUI	ling	נחדי	יטו	┝
3	DDH225	12.3	-65.96	202.68	50	45	326	37.0	1/5.0						┝
4		15.7	-65.96	202.68	53	56	235	45.0	234.0						L
5		25.2	-65.96	204.9						3			2.3	225-1	┝
5		27.5	-65.75	206.9			105		140.0		0.03			225-2	┝
		28.5	-65.75	206.9	50	32	125	35.0	146.0	120	1.1	2.07	1.3	225-3	┝
0		23.8	-63.01	204.88	50 Cala	07 40	2201	37.U C17	218.0	222	LD 0 /	2.07	1.4	220-4	-
- 3 10		31.Z	-63.01	204.00	ISCN OCV	40	260	5E 0	112.0	332	0.4 2.2		2.3	220-0 225-0	┝
10		33.U 24.0	-03.01 62.00	204.00		42 22	270		100.0	124	3.3		1.3	220-0	┝
12		34.0 27.2	-02.00	200.01	 	52	300j 0		120.0	104			2.0	220-7	⊢
12		39.2	-62.55	200.1		52	10	64.7	176.6	25			1	225-0	-
1/		58.5	-62.55	200.1		55	15	62.4	179.6	32	0.05		0.2	225-10	⊢
15		58.7	-62.55	200.1	Sch			77.0	350.0				0.2	225-10	⊢
16		58.7	-62.55	200.1	50	25		87.1	354.5					220-11	⊢
17		58.8	-62.00	206.52	F	30	290	72.4	111 4	34	0.01		03	225-12	-
18		59.0	-61.97	206.02	' Sch	46	340	70.8	155.4	52	0.01		12	225-12	┢
19		60.3	-6179	200.20	53	48	80	53.0	225.6	136	0.000		0.3	225-14	t
20		60.3	-6179	206.2	50	45	340	718	155.3				0.0		t
21		60.3	-61.79	206.2	Sch	38	280	61.4	107.8					¢	F
22		60.6	-61.79	206.2	S3	55	350	62.7	163.6	136	0.009		0.9	225-15	t
23		60.6	-61.79	206.2	SO	32	345	85.2	157.3						F
24		61.5	-61.79	206.2	SO	35	285	66.0	110.0	14	-		0.7	225-16	
25	DDH23	23.5	-61.79	206.2	Sch	45	395	69.4	195.7						F
26		45.6	-61.55	205.52	SO	43	330	72.3	147.4						F
27		62.2	-61.55	205.52	Sch	45	330	70.3	147.9	25	0.01		1	23-1	
28		62.2	-61.4	206.68	SO	46	0	72.0	170.0						
29		82	-61.4	206.68	S3	37	0	81.0	170.0	10	0.02		0.4	23-2	
30		82	-61.4	206.68	F	32	355	85.9	165.8						
31		82.4	-61.14	206.5	SO	37	345	80.3	157.9	34	0.009		0.3	23-3	
32		82.4	-61.14	206.5	Sch	55	110	35.4	238.6						
33		82.4	-61.14	206.5	S3	35	290	68.0	113.9						L
34		82.7	-60.8	205.83	SO	36	0	82.0	170.0	56	0.009		0.5	23-4	
35		82.7	-60.8	205.83	Sch	48	290	61.5	126.3						
36		83.2	-60.8	205.83	S3	45	40	74.4	200.2	102	3.29	1,585	0.6	23-5	
37		83.2	-60.8	205.83	SO	45	50	71.4	206.9						L
38		83.2	-60	206.25	QCV	30	40	88.3	205.8						
39		83.8	-60	206.25	<u>S0</u>	38	345	87.1	161.2	23	0.03		1	23-6	
40		83.8	-59.9	206.2	Sch	47	280	58.5	121.1			 			
41		83.8	-59.9	206.2	S0	37	340	87.4	157.1						
42		112	-59.9	206.2	QCV	40	280	63.8	115.8	15	0.009		0.2	23-7	L
43		112	-59.9	206.2	F	35	90	62.4	240.6						

No!

- At least two 1-to-1 sets of data in a single flat spreadsheet
 - Assay
 - Structure
 - See 'key'field comment below
- Split cells
 - bad enough in headings
 - disastrous in body of table
- Non-numeric data in numeric column
 - (- symbol)
- Alphanumeric numbers in nonsortable format
 - 225-1,...,225-11,...,23-1,...
 - DDH23,...,DDH225,...
- No distinct key field for related data
 - Not critical, but desirable

	A	В		D	E	F	G	H			K		M	N	
1	Drill data			Structure					Assay (-		ow detectio	on)	ſ		
2	DDH_ID	Depth	Plunae	Azimuth	Туре	a.	ß	Calc Din	Calc dirn	Cu (ppm)	Au1	Au (int)	Interval (m)	Sample ID	
3	DDH225	12.3	-65.96	202.68	50	- 45	326	37.0	175.0	(((,		F
4		15.7	-65.96	202.00	53	56	235	45.0	234.0						
5		25.2	-65.96	204.9					1	3		} 	2.3	225-1	
6		27.5	-65.75	206.9					+	98	0.03		1	225-2	
7		28.5	-65.75	206.9	SO	32	125	36.0	146.0	120	1.1		1.3	225-3	
8		29.8	-63.51	204.88	SO	57	225	37.0	218.0	3	1.5	2.87	1.4	225-4	
9		31.2	-63.51	204.88	Sch	40	285	61.7	112.8	332	8.4		2.3	225-5	
10		33.5	-63.51	204.88	QCV	42	275	55.9	106.6	302	3.3		1.3	225-6	
11		34.8	-62.86	205.51	SO	33	300	73.5	120.8	134	-		2.5	225-7	
12		37.3	-62.55	206.1	S3	52	0	66.0	170.0	10	-		1.9	225-8	
13		39.2	-62.55	206.1	QCV	53	10	64.7	176.6	25	-		1	225-9	
- 14		58.5	-62.55	206.1	S0	55	15	62.4	179.6	32	0.05		0.2	225-10	
15		58.7	-62.55	206.1	Sch	15	0	77.0	350.0	10	-		0.1	225-11	
16		58.7	-62.55	206.1	S0	25	5	87.1	354.5			ļ			
17		58.8	-62.19	206.52	F	30	290	72.4	111.4	34	0.01		0.3	225-12	
18		59.1	-61.97	206.28	Sch	46	340	70.8	155.4	52	0.009		1.2	225-13	
19		60.3	-61.79	206.2	<u> S3</u>	48	80	53.0	225.6	136	0.02		0.3	225-14	
20		60.3	-61.79	206.2	50	45	340	71.8	155.3						
21		60.3	-61.79	206.2	Sch	38	280	61.4	107.8						
22		60.6	-61.79	206.2	53	55	350	62.7	163.6	136	0.009		0.9	225-15	
23		60.6	-61.79	206.2	50	32	345	85.2	157.3				0.7	225 10	
24		01.0	-01.73	206.2	30 Cal-	30	260	00.U	105.7	14	-		0.7	220-16	
20		23.0 45.0	-61.73 C1EE	206.2	isch Co	40	330	72.2	195.7						
20		40.0 62.2	-61.00	205.52	Sch	43 45	330	70.3	147.4	25	0.01		1	23-1	
28		62.2	-614	205.52	50	45	0.00	72.0	170.0	23	0.01		'	23-1	
29		82	-614	200.00	53	37	0	810	170.0	10	0.02		0.4	23-2	
30		82	-614	206.68	F	32	355	85.9	165.8	·····	0.02		0.4		
31		82.4	-61.14	206.5	so	37	345	80.3	157.9	34	0.009		0.3	23-3	
32		82.4	-61.14	206.5	Sch	55	110	35.4	238.6						
33		82.4	-61.14	206.5	S3	35	290	68.0	113.9						
34		82.7	-60.8	205.83	SO	36	0	82.0	170.0	56	0.009	[0.5	23-4	
35		82.7	-60.8	205.83	Sch	48	290	61.5	126.3						
36		83.2	-60.8	205.83	S3	45	40	74.4	200.2	102	3.29	1 505	0.6	23-5	
37		83.2	-60.8	205.83	SO	45	50	71.4	206.9			1.000			
38		83.2	-60	206.25	QCV	30	40	88.3	205.8						
- 39		83.8	-60	206.25	S0	38	345	87.1	161.2	23	0.03		1	23-6	
40		83.8	-59.9	206.2	Sch	47	280	58.5	121.1						
41		83.8	-59.9	206.2	S0	37	340	87.4	157.1						
42		112	-59.9	206.2	QCV	40	280	63.8	115.8	15	0.009		0.2	23-7	
43		112	-59.9	206.2	F	35	90	62.4	240.6						

Or this

No!

- Alphanumeric fractions in numeric columns
- Meaningless alphanumeric fractions
- Incomplete data in X Y columns
- What coordinates does X Y reference?

	A	В	С	D	E	F	G	Н	- 1	J	K	L	M	N.
					COABSE	HABD						STB-		
1	PNT	×	Y	ιтн	NESS	NESS	CLASTS	DEFN	SUL	ASP	TEXT	TYPE	DIR	VLB
2	116	299605	8097252	3	2	2/3	3	3	2	1	2	1	225	10
3	116											2	270	87
4	116											2	310	60
5	116											3	160	60
6	116											4	260	08
7	116											1	286	86
8	116											1	236	35
9	117	299613	8097159	3	2	3	2	2	2	1	3	1	242	20
10	117											2	330	62
11	117											2	070	65
12	117											2	110	66
13	118	299618	8097059	3	2/4	3	2	2	3	1	3	1	060	28
14	118											2	210	88
15	118											3	265	75
16	119	299618	8096962	3	2	2	2/3	2/3	3	2	3	1	230	10
17	119											2	070	40
18	119											2	190	62
19	120	299638	8096879	2	2	1/2	3	3	0	0	0	1	225	12
20	120											2	330	62
21	120											2	265	65
22	121	299686	8097014	3	2	1/2	1	1	2	1	1	1	250	22
23	122	299662	8097059	3	2	2	2	2	2	1	3	1	250	16
24	123	299659	8097110	3	2	1/2	2	2	2	1	1	1	080	05
25	123											2	250	85
26	123						_					2	350	80
27	124	299661	8097172	3	2	2	3	3	2	1	2	1	250	10
28	124											2	005	70
29	124											2	300	75
30	124											3	340	60
31	125	299652	8097334	3	4/2	2	2	3	2	1	2	1	245	30
32	125											2	240	78
33	125											2	310	60
34	125											4	240	36
35	126	299492	8097409	3	2	2	1	1	1	1	1	1	265	05
36	127	299542	8097506	3	2	2	1/2	1/2	1	1	1	1	225	15
37	127											2	202	87
38	127											2	320	77

Excel spreadsheet databases

- 'Flat' databases Can only show 1:1 relationships
- Therefore need to include fields for all possibilities
- Thus get loads of empty space

E.g.:

What is a Database?

• Consist of:

- One or more Tables of basic data
 - spreadsheet-like Fields (columns) and Records (rows)
 - structured and populated following database 'rules'
 - e.g. Relational Databases:
 - each Record can be uniquely identified within any one Table
 - each Field contains the same Type of data (numeric, alphanumeric, date, object, etc)
 - Tables containing at least one of the same data columns can be linked to one another as if they were a single large table
 - » Uses Relationship 'rules' between the linked Tables
- Queries: structured views of of the data, using selected fields chosen from one or more Tables, linked together using the relationships between the overlapping fields

Relational databases

- E.g. Microsoft Access, Oracle, etc
- Multiple tables (spreadsheets) for every 1-to-many relationship
- Every Table has one or more Key field(s)
 - Unique value (number or characters)
 - May combine more than one field to form the Key
- Tables can be linked by their Key values in **Queries**

Relational Database

- Allows new temporary tables (Queries) to be formed by linking separate 1-1 tables using their Key fields
- Tables:

• Query 'Table':

Rocktype	Au	easting	northing
gabbro	0.009	336456	7769234
gabbro	0.01	336456	7769234
basalt	3.239	336466	7768124
basalt	0.03	336356	7769221

A temporary joining of fields from the three tables

Relational Database Structure

Database design

- Poor design, even for a simple database, can lead to unwarranted cleaning-up at a later stage
- Think carefully about how you are going to Query your database after all that's why you are doing it
- Only include those fields that will be involved in subsequent queries. The more fields you have, the more time-consuming it is to enter data.
 - in general, don't try to produce all-inclusive databases
 - databases tend to have a life that is limited to the project for which they were designed and hence extra effort may be wasted

Geographic Information Systems (GIS)

- GIS = Spatial relational databases
 - i.e exactly the same as any other relational database (RDBS) except that at least some of the Tables consist of entities with a geographic location
 - Data can be displayed as a map as well as a spreadsheet-like table
 - Separate Tables can be overlayed in map view as if they were a single map
 - This is the heart of a digital map system
 - Queries can link fields from different tables (as in any RDBS)
 - but can also select data on geographic criteria
 - such as 'Show only the data where map objects overlap'
 - Spatial Analysis of data is possible
 - Thematic mapping
 - Property distributions highlighted by colours, new symbols, contouring, etc
 - Spatial numerical analysis
 - spatial graphing

GIS - Spatial Relational Database

- E.g. MapInfo, ArcGIS, Manifold
- In addition to normal fields, Tables can have an extra field (commonly hidden) that contains geographic information about Geographic objects in the Table
 - Point, Line, Arc, Polyline, Polygon, Region, etc
- Geographic Information:
 - Point location or Centroid location (if a polygon object)
 - Perimeter
 - Area
 - Object contained on the left/right side of line
 - Etc
- Location information is dependent on Datums and Projections

Coordinate labels in databases

- Coordinate labels on spreadsheet or database columns should indicate the projection AND the datum
 - Assume that at some point that the data will be used by someone else
 - In the example shown at top right it is a reasonable guess that the projection is UTM – but what is the datum?
 - local alternatives are WGS84, Corrego Alegre, or SAD69
 - The example at lower right at least indicates that, in this case, the UTM guess is correct, and the datum is Corrego Alegre

PNT	X	Y	Lithotype
01	298843	8097407	2
02	298871	8097485	2
03	298909	8097512	2
20	298969	8097808	4
06	298987	8098281	2
07	298995	8098173	2
08	299000	8098096	2

PNT	Xutm_COA	Yutm_COA	Lithotype
01	298843	8097407	2
02	298871	8097485	2
03	298909	8097512	2
20	298969	8097808	4
06	298987	8098281	2
07	298995	8098173	2
08	299000	8098096	2

The UTM zone should also be referenced somewhere